Abstract
Traditional visual simultaneous localization and mapping (SLAM) systems rely on point features to estimate camera trajectories. However, feature-based systems are usually not robust in complex environments such as weak textures or obvious brightness changes. To solve this problem, we used more environmental structure information by introducing line segments features and designed a monocular visual SLAM system. This system combines points and line segments to effectively make up for the shortcomings of traditional positioning based only on point features. First, ORB algorithm based on local adaptive threshold was proposed. Subsequently, we not only optimized the extracted line features, but also added a screening step before the traditional descriptor matching to combine the point features matching results with the line features matching. Finally, the weighting idea was introduced. When constructing the optimized cost function, we allocated weights reasonably according to the richness and dispersion of features. Our evaluation on publicly available datasets demonstrated that the improved point-line feature method is competitive with the state-of-the-art methods. In addition, the trajectory graph significantly reduced drift and loss, which proves that our system increases the robustness of SLAM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.