Abstract
Donor–acceptor (D–A) copolymerization is an effective approach to construct low bandgap polymers with tunable electronic energy levels for the application as donor materials in polymer solar cells (PSCs). Usually, D–A copolymers possess an intramolecular charge transfer absorption band at long wavelength direction, so that the absorption of the polymers is broadened. However, absorption at short wavelength direction is also important and should be broadened and enhanced to increase the short-circuit current density (Jsc) of the PSCs. In this study, a series of low bandgap conjugated polymers, P(QP4-BT-DPP1), P(QP1-BT-DPP1), and P(QP1-BT-DPP4), based on two acceptor units quinoxalino[2,3-b′]porphyrin (QP) and diketopyrrolopyrrole (DPP) connected by oligothiophene donor units, were designed and synthesized by palladium-catalyzed Stille-coupling polymerization. As a complementary light-harvesting unit, QP was first introduced into the D–A conjugated polymers for improving the photovoltaic performance of PSCs...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.