Abstract
AbstractLarge‐area BiOCl nanosheet arrays grown on Cu substrate are transferred onto the polydimethylsiloxane (PDMS) substrate, while the as‐fabricated BiOCl/PDMS photodetector (PD) yields negligible photocurrents under UV light illumination. The introduction of a Ti3C2Tx MXene conduction layer at the interface increases both the photocurrent and dark current by 2–3 orders of magnitude. But this PD suffers from a large dark current (6.7 pA), a low on–off ratio (2.4), and a long decay time (6.87 s) under 350 nm light illumination at 5 V. After the deposition of ZnO nanoparticles (NPs), the optimized PD achieves a low dark current of 86 fA, a high on–off ratio of 7996.5, and a short decay time of 0.93 s. Additionally, the elimination of the Ti3C2Tx MXene layer causes decreased photocurrent and prolonged decay time. The greatly improved photoresponse and response speed of these PDs are ascribed to the increased light absorption brought by the ZnO NPs, the improved carrier separation promoted by the ZnO–BiOCl heterojunction, and the efficient carrier pathways provided by the Ti3C2Tx MXene conduction layers. The construction of heterojunctions and introduction of conduction additives improve the photodetecting performance of these BiOCl‐based PDs, promoting their practical applications in the photoelectric devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.