Abstract

In this work, one-dimensional TiO2 nanotube arrays are coupled with a covalent organic framework (COF) thin film with a controlled thickness to form a three-dimensional heterojunction, which exhibits a 3.3-fold higher hydrogen evolution rate than that of TiO2, and becomes active for CO2 conversion, compared to the bare COF. Such high activity results from the large difference in Fermi levels forming an internal electric field at the interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call