Abstract

Anisotropic rutile/anatase TiO2 nanoparticles (AB-TiO2) were synthesized by the Ti-peroxo complex method. Their photocatalytic activity in the degradation of Rhodamine B (RhB) was evaluated and compared to that of commercial TiO2 P25 and TiO2 obtained through the benzyl alcohol route (OB-TiO2). The samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR in DRIFT mode), Field-Emission Scanning Electronic Microscopy (FEG-SEM), N2 physisorption and UV-visible spectroscopy. Photodegradation of RhB was carried out under visible light and the results revealed a remarkable photocatalytic activity of the AB-TiO2 in terms of surface area. The excellent performance of the AB-TiO2 was explained in light of the synergistic effect of the coexistence of anatase/rutile phases, anisotropy and irreversible adsorption of organic species during sol-gel synthesis. UV-visible measurements also indicated that N-deethylation and photobleaching mechanisms occur to different extents, depending on the surface composition of the photocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call