Abstract
This paper introduces an enhanced phoneme-based myoelectric signal (MES) speech recognition system. The system can recognize new words without retraining the phoneme classifier, which is considered to be the main advantage of phoneme-based speech recognition. It is shown that previous systems experience severe performance degradation when new words are added to a testing dataset. To maintain high accuracy with new words, several improvements are proposed. In the proposed MES speech recognition approach, the raw MES is processed by class-specific rotation matrices to spatially decorrelate the data prior to feature extraction in a preprocessing stage. Then, an uncorrelated linear discriminant analysis is used for dimensionality reduction. The resulting data are classified through a hidden Markov model classifier to obtain the phonemic log likelihoods of the phonemes, which are mapped to corresponding words using a word classifier. An average word classification accuracy of 98.533% is achieved over six subjects. The system offers dramatically improved accuracy when expanding a vocabulary, offering promise for robust large-vocabulary myoelectric speech recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.