Abstract
In this paper, we propose and demonstrate a phase-stabilized radio-frequency (RF) reference transmission scheme by actively stabilizing the optical path delay of the fiber link. The reference RF tone is round-trip transferred between the central station and the remote end to obtain the delay variation. The fast and small part of the delay fluctuation is cancelled by a piezoelectric fiber stretcher, benefitting from its short response time and fine adjusting granularity. The slow and large part of the delay variation is used to alter a wavelength tunable laser, which results in a dispersion-induced tunable optical delay line with very large compensation range. Experimentally, a 2.48-GHz RF signal has been transferred through a 60-km optical fiber link with suppressed noise. The fractional frequency stability achieved is 6.5 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-14</sup> at 1 sand 2.1 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-17</sup> at 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> s averaging time, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.