Abstract

In order to prevent distance protection from tripping during power swing conditions, a power swing blocking device is often utilized. On the other hand, it has been an increasing requirement to achieve rapid clearance of internal faults during power swings. Accurate phase selection is a prerequisite to selective clearance of faults. An improved unbalanced fault phase selector during a power swing based on series multiresolution morphological gradient (SMMG) transform is proposed in this paper. As a feature extractor from raw signals, SMMG is employed to extract superimposed (fault component) current under the power swing condition in this paper. First, the operating characteristic of the sequence component fault phase selector during power swings is discussed. In order to overcome the disadvantage of the above selector, an improved fault phase selector for unbalanced faults during power swings is then proposed by using SMMG to extract superimposed components of modular current. The efficiency and feasibility of the proposed schemes are proven using a Power Systems Computer-Aided Engineering/Electromagnetic Transients including DC-based simulation on a sample power system

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call