Abstract

BackgroundAccurate quantification of radioactivity, measured by an integrated positron emission tomography (PET) and magnetic resonance imaging (MRI) system, is still a challenge. One aspect of such a challenge is to correct for the hardware attenuation, such as the patient table and radio frequency (RF) resonators. For PET/MRI systems, computed tomography (CT) is commonly used to produce hardware attenuation correction (AC) maps, by converting Hounsfield units (HU) to a linear attenuation coefficients (LAC) map at the PET energy level 511 keV, using a bilinear model. The model does not address beam hardening, nor higher density materials, which can lead to inaccurate corrections.PurposeIn this study, we introduce a transmission-based (TX-based) AC technique with a static Germanium-68 (Ge-68) transmission source to generate hardware AC maps using the PET/MRI system itself, without the need for PET or medical CT scanners. The AC TX-based maps were generated for a homogeneous cylinder, made of acrylic as a validator. The technique thereafter was applied to the patient table and posterior part of an RF-phased array used in cardiovascular PET/MRI imaging. The proposed TX-based, and the CT-based, hardware maps were used in reconstructing PET images of one cardiac patient, and the results were analysed and compared.ResultsThe LAC derived by the TX-based method for the acrylic cylinder is estimated to be 0.10851 ± 0.00380 cm−1 compared to the 0.10698 ± 0.00321 cm−1 theoretical value reported in the literature. The PET photon counts were reduced by 8.7 ± 1.1% with the patient table, at the region used in cardiac scans, while the CT-based map, used for correction, over-estimated counts by 4.3 ± 1.3%. Reconstructed in vivo images using TX-based AC hardware maps have shown 4.1 ± 0.9% mean difference compared to those reconstructed images using CT-based AC.ConclusionsThe LAC of the acrylic cylinder measurements using the TX-based technique was in agreement with those in the literature confirming the validity of the technique. The over-estimation of photon counts caused by the CT-based model used for the patient table was improved by the TX-based technique. Therefore, TX-based AC of hardware using the PET/MRI system itself is possible and can produce more accurate images when compared to the CT-based hardware AC in cardiac PET images.

Highlights

  • Hybrid positron emission tomography (PET) and magnetic resonance imaging (MRI) systems are becoming increasingly important in cardiovascular diagnostic imaging [27]

  • The linear attenuation coefficients (LAC) derived by the TX-based method for the acrylic cylinder is estimated to be 0.10851 ± 0.00380 cm−1 compared to the 0.10698 ± 0.00321 cm−1 theoretical value reported in the literature

  • The PET photon counts were reduced by 8.7 ± 1.1% with the patient table, at the region used in cardiac scans, while the CTbased map, used for correction, over-estimated counts by 4.3 ± 1.3%

Read more

Summary

Introduction

Hybrid positron emission tomography (PET) and magnetic resonance imaging (MRI) systems are becoming increasingly important in cardiovascular diagnostic imaging [27]. Unlike patient AC maps, which can be determined using an MRI attenuation correction acquisition (MRAC) [22], hardware is often invisible to MRI To overcome such hardware attenuation, it is often required to prospectively redesign some hardware (i.e. rigidly fixed RF arrays) for simultaneous PET/MRI, aiming to reduce their photon attenuation [12]. Accurate quantification of radioactivity, measured by an integrated positron emission tomography (PET) and magnetic resonance imaging (MRI) system, is still a challenge One aspect of such a challenge is to correct for the hardware attenuation, such as the patient table and radio frequency (RF) resonators. The proposed TX-based, and the CT-based, hardware maps were used in reconstructing PET images of one cardiac patient, and the results were analysed and compared

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call