Abstract
An emerging method for effectively improving the catalytic activity of metal oxide hybrids involves the creation of metal oxide interfaces for facilitating the activation of reagents. Here, we demonstrate that bilayer vesicles formed from a hexavanadate cluster functionalized with two alkyl chains are highly efficient catalysts for the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) with H2O2 at room temperature, a widely used model reaction mimicking the activity of peroxidase in biological catalytic oxidation processes. Driven by hydrophobic interactions, the double-tailed hexavanadate-headed amphiphiles can self-assemble into bilayer vesicles and create hydrophobic domains that segregate the TMB chromogenic substrate. The reaction of TMB with H2O2 takes place at the interface of the hydrophilic and hydrophobic domains, where the reagents also make contact with the catalytic hexavanadate clusters, and it is approximately two times more efficient compared with the reactions carried out with the corresponding unassembled systems. Moreover, the assembled vesicular system possesses affinity for TMB comparable to that of reported noble metal mimic nanomaterials, as well as a higher maximum reaction rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.