Abstract
We fabricated silicon nanowire/cadmium telluride quantum dots (CdTe QDs)/organic hybrid solar cells and investigated their structure and electrical properties. Transmission electron microscope revealed that CdTe QDs were uniformly distributed on the surface of the silicon nanowires, which made PEDOT:PSS easily filled the space between SiNWs. The current density–voltage (J–V) characteristics of hybrid solar cells were investigated both in dark and under illumination. The result shows that the performance of the hybrid solar cells with CdTe QDs layer has an obvious improvement. The optimal short-circuit current density (Jsc) of solar cells with CdTe QDs layer can reach 33.5mA/cm2. Compared with the solar cells without CdTe QDs, Jsc has an increase of 15.1%. Power conversion efficiency of solar cells also increases by 28.8%. The enhanced performance of the hybrid solar cells with CdTe QDs layers are ascribed to down-shifting effect of CdTe QDs and the modification of the silicon nanowires surface with CdTe QDs. The result of our experiments suggests that hybrid solar cells with CdTe QDs modified are promising candidates for solar cell application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.