Abstract

Sequential deposition solution-based method has been widely used for the fabrication of perovskite solar cells (PSCs). However, there is still a challenge to achieve homogeneous and consecutive surface of the perovskite layers. In this work, CH3NH3PbI3−xClx layers were prepared by a modified two-step solution method. Specifically, the optimum amount of CH3NH3Cl pre-added into PbI2 precursor solution, the appropriate size of pinholes and voids appear in PbI2 films and leave room for the growth of CH3NH3PbI3−xClx crystal. Under this condition, the crystal grains size is diminished and the surface coverage ratio of CH3NH3PbI3−xClx film is enhanced, which prevent the combination of electron-hole pairs on the interface between perovskite layer and TiO2 substrate. By varying the CH3NH3Cl amounts, the PSC devices displayed the highest power conversion efficiency of 13 %, which was obviously higher than that of the one prepared via transitional routes (10.32 %). As a result, we developed a simple and repeatable route for controllable synthesis of perovskite absorption layers, which is demonstrated to be effective to improve the performance of PSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.