Abstract
A variety of airfoils designed for wind turbine rotor blade applications were simulated with k − ω shear stress transport (SST) turbulence model in its standard form, the k − ω SST turbulence model with a modified a 1 constant (referred to as the a 1 method), the Spalart-Allmaras turbulence model, and the panel method XFoil. To assess their performance, the results of airfoil lift, drag, and coefficient of pressure were compared against available wind tunnel data, where available. The standard k −ω SST turbulence model is found to over-predict Reynolds shear stresses, delay the flow separation, and under-predict the separated-flow region on the airfoil’s suction side. Airfoil thicknesses between 11% and 36% of the chord length were studied. Using a modified a 1 constant, some airfoils exhibited up to a 20% improvement in the prediction of lift and drag coefficients within the post-stall range of angle of attack (AoA). It is important to note that the a 1 method’s applicability and effectiveness is specifically tested for airfoils, and its performance is highly dependent on the airfoil geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.