Abstract

The effect of incorporating different types of carbon nanotubes into composite films of a redox polymer (FcMe2-C3-LPEI) and glucose oxidase (GOX) was investigated. The composite films were constructed by first forming a high-surface area network film of either single-walled carbon nanotubes (SWNTs) or multiwalled carbon nanotubes (MWNTs) on a glassy carbon electrode (GCE) by solution casting of a suspension of Triton-X-100 dispersed SWNTs. Next a glucose responsive redox hydrogel was formed on top of the nanotube-modified electrode by cross-linking FcMe2-C3-LPEI with glucose oxidase via ethylene glycol diglycidyl ether (EGDGE). Electrochemical and enzymatic measurements showed that composite films made with (7,6) SWNTs produced a higher response (3.3 mA/cm2) to glucose than films made with (6,5) SWNTs (1.8 mA/cm2) or MWNTs (1.2 mA/cm2) or films made without SWNTs (0.7 mA/cm2). We also show that the response of the composite films could be systematically varied by fabricating SWNT films with different weight ratios of (7,6) and (6,5) SWNTs. Optimization of the (7,6) SWNTs loading and the redox polymer-enzyme film produced a glucose response of 11.2 mA/cm2. Combining the optimized glucose films with a platinum oxygen breathing cathode into a biofuel cell produced a maximum power density output of 343 μW/cm2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call