Abstract

We demonstrate significantly enhanced performances of 1.3-μm InAs/GaAs quantum dot (QD) lasers by directly Si-doped QDs. The lasers were grown by molecular beam epitaxy. Following Si doping, the ridge waveguide laser, with uncoated facets, showed a remarkably reduced continuous-wave threshold current density of 71.6 A/cm2 (14.3 A/cm2 per QD layer), compared with 167.3 A/cm2 (33.5 A/cm2 per QD layer) for an undoped device with an identical structure, measured at 20 °C. Moreover, doping improved the single-side slope efficiency from 0.28 to 0.42 W/A. In addition, the Si-doped QD laser exhibited a higher lasing temperature of up to 140 °C compared with 120 °C for the undoped QD laser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.