Abstract

To determine the effect of altitude training at 1600 and 1800m on sea-level (SL) performance in national-level runners. After 3wk of SL training, 24 runners completed a 3-wk sojourn at 1600m (ALT1600, n = 8), 1800m (ALT1800, n = 9), or SL (CON, n = 7), followed by up to 11wk of SL racing. Race performance was measured at SL during the lead-in period and repeatedly postintervention. Training volume (in kilometers) and load (session rating of perceived exertion) were calculated for all sessions. Hemoglobin mass was measured via CO rebreathing. Between-groups differences were evaluated using effect sizes (Hedges g). Performance improved in both ALT1600 (mean [SD] 1.5% [0.9%]) and ALT1800 (1.6% [1.3%]) compared with CON (0.4% [1.7%]); g = 0.83 (90% confidence limits -0.10, 1.66) and 0.81 (-0.09, 1.62), respectively. Season-best performances occurred 5 to 71d postaltitude in ALT1600/1800. There were large increases in training load from lead-in to intervention in ALT1600 (48% [32%]) and ALT1800 (60% [31%]) compared with CON (18% [20%]); g = 1.24 (0.24, 2.08) and 1.69 (0.65, 2.55), respectively. Hemoglobin mass increased in ALT1600 and ALT1800 (∼4%) but not CON. Larger improvements in performance after altitude training may be due to the greater overall load of training in hypoxia compared with normoxia, combined with a hypoxia-mediated increase in hemoglobin mass. A wide time frame for peak performances suggests that the optimal window to race postaltitude is individual, and factors other than altitude exposure per se may be important.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call