Abstract

This article presents a Permanent Magnet Synchronous Motor (PMSM) control system which retains its performance for a significant variation of the parameters and load torque which represent disturbance for the control system. Classically, the PMSM control system is built in the form of a Field Oriented Control (FOC) control strategy structure built around PI speed (outer loop) and current (inner loop) controllers. We present the design stages and the numerical simulations performed in Matlab/Simulink, which prove the superiority of the robust control, by comparison with the classic FOC-type control structure. Because the Reinforcement Learning Twin-Delayed Deep Deterministic Policy Gradient (RL-TD3) agent is the most suitable for machine learning for process control, we synthesize a robust controller whose control quantities <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\boldsymbol{u}_{d}$</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\boldsymbol{u}_{q}$</tex> are adjusted by a properly created and trained RL-TD3 agent. Using this robust combined controller plus RL-TD3 agent, superior performance is achieved in terms of response time and speed ripple.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.