Abstract

Solution processed organometal trihalide materials spur tremendous attention due to their unprecedented performance in photovoltaic applications. However, submicron thick perovskite films are prone to morphological defects in the form of cracks, pinholes and porosity; the traits originated from their solution phase processing and subsequent crystallization. Moreover, pinholes and cracks in the thin film of spincoated Spiro-OMeTAD hole transport layer reduce the performance reliability by forming micro shorts and weaken the defense against moisture ingress to the perovskite layer. For the large scale processing of perovskite solar cell from the economically prudent solution phase processing, morphological shortcomings of both perovskite and hole transport layers need an urgent address. By selecting non-conventional lead precursor (lead acetate) and implementing anti-solvent treatment during film deposition, we able to form pinhole free and compact perovskite film. Crack free hole conducting layer is obtained by blending Spiro-OMeTAD with a conducting polymer without compromising in the solar cell performance. A detail investigation of the charge transport and charge extraction properties of the developed hole transport layers have been carried out. The developed CH3NH3PbI3 based perovskite solar cells show improved repeatability and performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.