Abstract

In this article, an adaptive pulse-coupled neural network (PCNN) polarization image denoising method based on Grey Wolf Optimization (GWO) and Non-Subsampled Contourlet Transform(NSCT) is proposed. Different from the traditional PCNN denoising method, the captured polarization image was firstly devised by the NSCT and enforced band-decomposition to denoised by PCNN. The evaluable index of the image was used for quantitative analysis. Then, GWO is used to update PCNN inherent voltage constant and attenuation time constant and neurons connected intensity factor three model parameters, after looking for multiple optimal solutions, and then to polarized image denoising to achieve the best effect. This method not only avoids the image edge blurring caused by the traditional image denoising method, but also solves the problem that the parameters of the PCNN are difficult to accurately estimate. Hence, it is more suitable for polarization images containing noise. The experiment and the quantitative analysis of image evaluation indices showed that NSCT-GWO-PCNN effectively suppresses the noise in polarization image by reducing salt-and-pepper noise while protecting edges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.