Abstract

Novel biochars, namely nano iron sulfide@ walnut shell biochar (FeS@WNS), Starch-FeS@WNS and Chitosan-FeS@WNS, were prepared by WNS loaded with nano FeS and starch (or chitosan). Nano FeS can be effectively improved lead ions (Pb(II)) removal and starch (or chitosan) improved the stability of FeS and the defect of easy agglomeration. The materials were characterized by SEM, EDS, FTIR and XRD, and the preparation was successful. The adsorption capacity of Pb(II) reached 63.5, 80.0, 84.7 mg g−1 under 0.5 g L−1 of FeS@WNS, Starch-FeS@WNS and Chitosan-FeS@WNS. The adsorption of Pb(II) on the materials was more consistent with the pseudo-second-order kinetic model (K2 = 0.001–0.005 g (mg·min)−1, R2 = 0.980–0.999) and Langmuir model (R2 = 0.974–1.00), indicating that the adsorption of Pb(II) was mainly monolayer adsorption dominated by chemical adsorption. △G < 0 (-3.7~-6.97) and △H > 0 (1.56–20.49) indicated that the reaction was a spontaneous endothermic process. The mechanisms of Pb(II) removal from aqueous solutions involved electrostatic attraction, hydrogen bonding, physical adsorption, ion exchange and oxidoreduction. Additionally, stability and reusability of FeS@WNS, Starch-FeS@WNS and Chitosan-FeS@WNS was good. The novel sorbents of Starch-FeS@WNS and Chitosan-FeS@WNS can be used in Pb(II) wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.