Abstract

With the advancement of unmanned aerial vehicle (UAV) technology and its widespread use in many facets of manufacturing and daily life, the need for UAV mission automation is becoming more and more practical. In order to improve the automatic obstacle avoidance and path planning performance of UAVs, this essay proposes an optimized route planning algorithm based on the artificial potential field (APF) method, which have solved the typical issue of the APF. This method chooses to conduct a pre planning trajectory of the UAV based on a rapidly expanding random tree (RRT). The pre-planned path will be split into continuous particles, and then generating intermediate waypoints. A nearby waypoint offers a gravitational force to aid the UAV in escaping the local minimum when it enters it. At the same time, taking the distance from the UAV to the obstacle and the radius of influence of the obstacle itself into consideration, dynamically adjust the gravitational and repulsive coefficients, set up a non-gravitational zone around the obstacle, which is beneficial for the UAV to elude the obstacle. And set up a repulsive limited action zone to reduce unnecessary turns in the trajectory to achieve the effect of path optimization. Considering the difficulty of single UAV missions in most cases, this paper discusses cooperative flight path planning for multiple UAVs into consideration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.