Abstract

Abstract During geologic carbon sequestration, it is of immense importance that the migration of the injected plume of CO 2 be monitored in order to ensure containment within the storage volume. We have previously described a framework for predicting future plume migration, taking into account routinely recorded well data (like injection rate or bottom-hole pressures). The cornerstone of our prediction process is the use of a particle-tracking proxy that provides the ability to assess rapidly the flow connectivity of multiple aquifer models without the need to use computationally expensive numerical simulators. In this paper, we extend the proxy to explicitly represent multiphase flow effects, buoyancy effects and the effect of fluid viscosity and compressibility. The resultant proxy is thus robust for representing plume migration corresponding to flow and transport of CO 2 in aquifers exhibiting complex heterogeneity and for different physical flow and transport mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.