Abstract

Particle Swarm Optimization (PSO) is one of the most powerful algorithms for optimization. Traditional PSO algorithm tends to suffer from slow convergence and trapping into local optimum. In this paper, an improved PSO algorithm is proposed by combining dynamic fractional order technology and the wavelet mutation strategy. In the proposed method, a dynamic fractional order velocity update equation is designed to control the convergence rate. Furthermore, the wavelet mutation mechanism is employed to improve the swarm diversity and escape from the local optimums. The experimental results show that the proposed algorithm can provide fast convergence speed and high convergence precision based on the ten classic test functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.