Abstract
From the inception of Particle Swarm Optimization (PSO) technique, a lot of work has been done by researchers to enhance its efficiency in handling optimization problems. However, one of the general operations of the algorithm still remains — obtaining global best solution from the personal best solutions of particles in a greedy manner. This is very common with many of the existing PSO variants. Though this method is promising in obtaining good solutions to optimization problems, it could make the technique susceptible to premature convergence in handling some multimodal optimization problems. In this paper, the basic PSO (Linear Decreasing Inertia Weight PSO algorithm) is used as case study. An adaptive feature is introduced into the algorithm to complement the greedy method towards enhancing its effectiveness in obtaining optimal solutions for optimization problems. The enhanced algorithm is labeled Greedy Adaptive PSO (GAPSO) and some typical continuous global optimization problems were used to validate its effectiveness through empirical studies in comparison to the basic PSO. Experimental results show that GAPSO is more efficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.