Abstract
In an emergency route planning technique, simulating the dynamic crowd has route capacity constraints and global target of evacuating all crowd evacuees. To stimulate the crowd, the new arena is developed to know the real-time situation to face the crowd evacuation on exit point. The crowd evacuation is done with the process of Hybrid Agent Reinforcement Learning (HARL) algorithm consisting of Improved Multi-Agent Reinforcement Learning (IMARL) and State-Action-Reward-State-Action (SARSA). In the proposed work, the appropriate route selection mechanism focused on finding optimum evacuation route(s) is done in the first phase. Dynamic crowd can also be evacuated to find its way with the support of the HARL process in the second phase. The proposed HARL method can also be implemented with multi-objective improved particle swarm optimization (IPSO) technique for crowd simulation. The experimented results demonstrate the effectiveness of stability in the HARL process, which provides an improved performance for crowd simulation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.