Abstract

Accurate modeling of the intrinsic recombination in silicon is important for device simulation as well as for interpreting measured effective carrier lifetime data. In this contribution we study the injection-dependent effective carrier lifetime applying advanced surface passivation techniques based on Al2O3 or SiNx We show that in some cases the measured lifetime data significantly exceeds the previously accepted intrinsic lifetime limit proposed by Kerr and Cuevas [1]. To verify our measurements we independently perform lifetime measurements with different measurement techniques in two different laboratories. Based on effective lifetime measurements we develop an advanced parameterization of the intrinsic lifetime in crystalline silicon at 300K as a function of the doping density and the injection level, which accounts for Coulomb-enhanced Auger recombination and Coulomb-enhanced radiative recombination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.