Abstract

Accurate estimation of state-of-charge (SOC) of lithium-ion batteries (LIBs) is one of the important tasks of the on-board battery management system (BMS) to ensure the safe, efficient and reliable operation of electric vehicle power battery packs. In order for the BMS to monitor and predict battery behavior, an accurate battery model is needed to establish the relationship between the measurable external characteristic quantities (e.g., voltage, current and temperature) and the battery state. In this paper, a 2-resistor-capacitor (RC) network equivalent circuit model (ECM) is adopted and the hysteresis effect is considered to improve its accuracy. Thereafter, a novel online joint SOC estimation method combining the fixed memory recursive least squares (FMRLS) method and sigma-point Kalman filter (SPKF) algorithm is proposed to dynamically identify the model parameters and estimate the battery SOC. A dataset consisting of data from a dynamic stress test (DST) and a federal urban driving schedule (FUDS) test is then used to verify the proposed method. The results show that the joint SOC estimation method yields a significantly higher SOC estimation precision than the single SPKF estimation method on the basis of accurately tracking the dynamic changes of model parameters, and the addition of the hysteresis to the ECM also has a significant effect on improving the SOC estimation precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.