Abstract

A novel coefficient penalized regularization method for generalized autocalibrating partially parallel acquisitions (GRAPPA) reconstruction is developed for improving MR image quality. In this method, the fitting coefficients of the source data are weighted with different penalty factors, which are highly dependent upon the relative displacements from the source data to the target data in k-space. The imaging data from both phantom testing and in vivo MRI experiments demonstrate that the coefficient penalized regularization method in GRAPPA reconstruction is able to reduce noise amplification to a greater degree. Therefore, the method enhances the quality of images significantly when compared to the previous least squares and Tikhonov regularization methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.