Abstract

We present a method to derandomize RNC algorithms, converting them to NC algorithms. Using it, we show how to approximate a class of NP-hard integer programming problems in NC, to within factors better than the current-best NC algorithms (of Berger & Rompel and Motwani, Naor & Naor); in some cases, the approximation factors are as good as the best-known sequential algorithms, due to Raghavan. This class includes problems such as global wire-routing in VLSI gate arrays. Also for a subfamily of the “packing” integer programs, we provide the first NC approximation algorithms; this includes problems such as maximum matchings in hypergraphs, and generalizations. The key to the utility of our method is that it involves sums of superpolynomially many terms, which can however be computed in NC; this superpolynomiality is the bottleneck for some earlier approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.