Abstract
In this work, we successfully synthesized bimetallic transition oxides into two-dimensional nanosheets, which expose all the catalytic sites on the surface. Then, Cu, N, and P elements were rationally doped inside the as prepared Co0.4Mn0.6O2 nanosheets to activate the Co/Mn catalytic sites. It is found that the resulting N/P-Cu0.1Co0.3Mn0.6O2/CNTs composites show an overpotential η10 of 290 mV for OER, much lower than the value measured using the original Co0.4Mn0.6O2/CNTs (463 mV). Meanwhile, N/P-Cu0.1Co0.3Mn0.6O2/CNTs also show decent performance with a half potential (E1/2) of 0.82 V vs RHE for ORR, i.e., a 702 mV voltage difference for OER and ORR, much lower than other transition metal oxide catalysts. By using N/P-Cu0.1Co0.3Mn0.6O2/CNTs as a cathodic catalyst for ZAB, we measured superior performance, with a peak power density of 108.1 mW cm−2 and stable operation for over 200 h at 10 mA cm−2, better than IrO2-Pt/C-based ZAB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.