Abstract
Smart transformers are considered a crucial part of future smart grids as they will operate as the energy router and be able to control the power flows from and to the microgrids since they are placed in the border. A multi-port transformer can integrate different energy resources, loads and energy storage systems, optimizing the power flows between these elements. Combining both concepts, a multi-port smart transformer is obtained that is able to integrate efficiently distributed and renewable energy resources, electric vehicle chargers, prosumers and energy storage in both AC and DC microgrids. Nevertheless, the operation of these transformers, composed of several modules connected in series to the high-voltage grid is not easy, mainly due to the different power consumed or generated by each module. In this paper this issue is analyzed and different operation strategies for coordinating the series-connected modules at the input side are studied by simulation. The paper will expose how it is possible to extend the proper operation of the system if a reactive power controller is implemented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.