Abstract

We present a new expansion scheme to compute the rate for parton splittings in dense and finite QCD media. In contrast to the standard opacity expansion, our expansion is performed around the harmonic oscillator whose characteristic frequency depends on the typical transverse momentum scale generated in the splitting. The first two orders account for the high frequency regime that is dominated by single hard scatterings together with the regime of multiple soft scatterings at low frequency. This provides the tools to go beyond the leading logarithmic approximation and compare to the full numerical solution to the corresponding Schrödinger equation across a wide range of gluon frequencies. We investigate the sensitivity of our results to varying the separation scale that defines the leading order. Finally, the application to Monte Carlo event generators is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.