Abstract

Corrections are made to the Joy-Parr hydrogen and the Saturno-Parr methane one-centre wave functions and the functions are accurately reminimized with respect to the energy. The electronic wave functions and total molecular energies are obtained for various internuclear distances and the equilibrium internuclear distance and the breathing force constant determined. Three methods for calculating the force constant are given and compared. The equilibrium bond length for hydrogen is found to be 1·38 a.u. (experimental, 1·40 a.u.) and the force constant 6·33 md/a (experimental, 5·75 md/a). For methane the equilibrium C-H distance is found to be 2·014 a.u. (experimental, 2·05 a.u. and the force constant 25·8 md/a (experimental, 23·5 md/a). The total computed molecular energies for the equilibrium configurations of hydrogen and methane are -1·1605 a.u. (experimental, -1·175 a.u.) and -39·8444 a.u. (experimental, -40·51 a.u.) respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.