Abstract

A Monte Carlo simulation of electromagnetic scattering from one-dimensional perfectly conducting random surfaces is considered in the paper. Surface profiles of desired statistics are generated numerically using a standard procedure and the scattering solution for the surface samples of finite length is calculated using the method of moments. A new technique is used to reduce the effect of the edges of the finite surface samples. In this technique, the conductivities of the surface near edges are controlled by adding an appropriate tapered resistive sheet. It is shown that the accuracy at large angles of incidence, thetas > 50°, and the computation efficiency are improved significantly using this method, when compared to the standard tapered illumination method. Results based on this numerical approach are compared with those based on the small perturbation and physical optics approximations in their respective regions of validity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.