Abstract
The results of numerical simulations of inclined negatively buoyant jets are presented. These simulations address previously highlighted difficulties in capturing sufficient detail of critical flow processes to effectively predict the detailed flow behaviour. In particular, the new simulations are able to accurately capture the details of the buoyancy-induced instabilities, which are clearly evident in associated experimental investigations and that have significant impacts on the flow behaviour. This new information is captured for inclined negatively buoyant jets discharged at 45° above a horizontal reference plane. A Large Eddy Simulation (LES) approach is implemented that makes use of a Lagrangian Dynamic Sub-grid scale (SGS) model and a novel criterion for the adaptive meshing system. Comparisons with previously published simulation results and experimental data demonstrate that these new Adaptive LES simulations provide improved predictions of flow path, concentration and velocity fields, and associated mean and turbulent statistics. In addition, this study provides a set of methods for generating high-quality LES data sets for free shear flows, which are well beyond the level of detail that can be captured by current experimental systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.