Abstract
This paper concerns the direct numerical evaluation of singular integrals arising in Boundary Integral Equations for displacement (BIE) and displacement gradients (BIDE), and the formulation of a Traction Boundary Integral Equation (TBIE) for solving general elastostatic crack problems. Subject to certain continuity conditions concerning displacements and tractions at the source point, singular integrals in the BIE and the BIDE corresponding to coefficients of displacement and displacement gradients at the source point are shown to be of a form that allows application of Stokes' theorem. All the singular integrals in 3-D BIE and BIDE are reduced to non-singular line integrals, and those in 2-D BIE and BIDE are evaluated in closed form. Remaining terms involve regular integrals, and no references to Cauchy or Hadamard principal values are required. Continuous isoparametric interpolations used on continuous elements local to the source point are modified to include unique displacement gradients at the source point which are compatible with all local tractions. The resulting numerical BIDE is valid for source points located arbitrarily on the boundary, including corners, and a procedure is given for constructing a TBIE from the BIDE. Some example solutions obtained using the present numerical method for the TBIE in 2-D and 3-D are presented. © British Crown Copyright 1997/DERA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.