Abstract

Continuum traffic flow models are essentially nonlinear hyperbolic systems of partial differential equations. Except for limited specific cases, these systems must be solved numerically. Mathematical structure of continuum models can be different for each class of models. As a result, suitable numerical schemes for some classes may not be efficient for others. In this study, an improved numerical method is proposed for a class of second-order traffic flow models. The method is based on McCormack scheme, which is a widely-used method for non-homogeneous second-order traffic flow models, but fails to produce reasonable results for homogeneous models including Aw-Rascle type models which are the focus of this paper. It is shown that this is mainly due to spurious numerical oscillations. Smoothing methods to overcome these issues are studied and applied. Central dispersion and artificial viscosity (AV) methods are incorporated into the standard McCormack scheme and tested. To reduce numerical diffusion, a total variation diminishing Runge-Kutta time stepping scheme is applied. Results show the capability of the proposed methods, and especially the AV method, to eliminate the oscillations of the standard McCormack scheme as well as controlling numerical diffusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.