Abstract

Theoretical estimates of nucleosynthesis yields are widely used to infer the meaning of abundance trends, and to predict behavior of abundances in the first stars. We show that the standard prescriptions are incomplete, and illustrate some simple improvements. We consider the effects of internal gravity waves (induced in radiative regions by convective zones) on the evolution of slowly rotating (nonrotating) stars. We demonstrate that such modifications to the standard evolutionary algorithms give better agreement with observation. They imply new phenomena: interations between carbon and oxygen burning shells, detached flames in convective layers, and intermittency, for example. We argue that such hydrodynamic behavior must be part of realistic stellar evolution. Some preliminary results for the Sun and Sirius are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call