Abstract

Automated nuclear segmentation on histopathological images is a prerequisite for a computer-aided diagnosis system. It becomes a challenging problem due to the nucleus occlusion, shape variation, and image background complexity. We present a computerized method for automatically segmenting nuclei in breast histopathology using an integration of a deep learning framework and an improved hybrid active contour (AC) model. A class of edge patches (nuclear boundary), in addition to the two usual classes - background patches and nuclei patches, are used to train a deep convolutional neural network (CNN) to provide accurate initial nuclear locations for the hybrid AC model. We devise a local-to-global scheme through incorporating the local image attributes in conjunction with region and boundary information to achieve robust nuclear segmentation. The experimental results demonstrated that the combination of CNN and AC model was able to gain improved performance in separating both isolated and overlapping nuclei.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.