Abstract
Sea surface is rough when the weather condition at sea is rough due to strong wind, waves, swell and storms. Under the rough sea condition, the propagation of radar energy and the subsequent radar coverage is strongly influenced by various atmospheric effects, such as, strong wind, wave height, weather condition, oceanic currents and rainstorms. The identification of ship wakes in Synthetic Aperture Radar (SAR) image under the rough sea condition is viewed as a highly complex task for the real time monitoring and surveillance applications. It becomes a quite big challenge due to coherent radiation of backscattering signals and the multiplicative speckle noise found in SAR images. The objective of this work is to develop an optimized Discrete Wavelet Transform (DWT) based on Synergistic Fibroblast Optimization (SFO) algorithm for filtering speckle noise in SAR image which are captured under rough sea condition. An improved filtering technique is tested with the real time SAR images acquired from European Space Agency (ESA) sentinel scientific data hub and its efficacy is further validated by employing Discrete Radon Transform (DRT) method to detect ship wakes (linear signature) in SAR image under rough sea surface. The performance of SFO based wavelet transform is evaluated and compared with conventional DWT families, namely, daubechies, coiflet, symlet, discrete meyer, biorthogonal and reverse biorthogonal to conduct the better investigation of this study. Investigation of results illustrates the effectiveness of optimized method, in terms of, noise suppression and its implication on radon transform method to localize the identification of ship wakes in SAR imagery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.