Abstract

Nuclear magnetic resonance (NMR) spectroscopy can reveal conformational states of a protein in physiological conditions. However, sparsely available NMR data for a protein with large degrees of freedom can introduce structural artifacts in the built models. Currently used state-of-the-art methods deriving protein structure and conformation from NMR deploy molecular dynamics (MD) coupled with simulated annealing for building models. We provide an alternate graph-based modeling approach, where we first build substructures from NMR-derived distance-geometry constraints combined in one shot to form the core structure. The remaining molecule with inadequate data is modeled using a hybrid approach respecting the observed distance-geometry constraints. One-shot structure building is rarely undertaken for large and sparse data systems, but our data-driven bottom-up approach makes this uniquely feasible by suitable partitioning of the problem. A detailed comparison of select models with state-of-art methods reveals differences in the secondary structure regions wherein the correctness of our models is confirmed by NMR data. Benchmarking of 106 protein-folds covering 38-282 length structures shows minimal experimental-constraint violations while conforming to other structure quality parameters such as the proper folding, steric clash, and torsion angle violation based on Ramachandran plot criteria. Comparative MD studies using select protein models from a state-of-art method and ours under identical experimental parameters reveal distinct conformational dynamics that could be attributed to protein structure-function. Our work is thus useful in building enhanced NMR-evidence-based models that encapsulate the contextual secondary and tertiary structure variations present during the experimentation and expand the scope of functional inference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.