Abstract

Upflow anaerobic sludge blanket reactors may offer a number of advantages over conventional mixed-tank, SBR, and biofilm reactors, including high space-loading, low footprint, and resistance to shocks and toxins. In this study, we assessed the use of upflow anaerobic sludge blanket (UASB) reactor technology as applied to anaerobic ammonia removal, or Anammox. Four 200 ml UASB reactors were inoculated with 50% (by volume) anaerobic granular sludge and 50% flocular sludge from different sources (all with the potential for containing Anammox organisms). Tools used to assess the reactors included basic analyses, fluorescent in-situ hybridisation, and mathematical modelling, with statistical non-linear parameter estimation. Two of the reactors showed statistically identical Anammox activity (i.e., identical kinetic parameters), with good ammonia and nitrite removal (0.14 kgNHx m(-3) reactor day(-1), with 99% ammonia removal). The third reactor also demonstrated significant Anammox activity, but with poor identifiability of parameters. The fourth reactor had no statistical Anammox activity. Modelling indicated that poor identifiability and performance in the third and fourth reactors were related to an excess of reduced carbon, probably originating in the inoculum. Accumulation of Anammox organisms was confirmed both by a volume loading much lower than the growth rate, and response to a probe specific for organisms previously reported to mediate Anammox processes. Overall, the UASB reactors were effective as Anammox systems, and identifiability of the systems was good, and repeatable (even compared to a previous study in a rotating biological contactor). This indicates that operation, design, and analysis of Anammox UASB reactors specifically, and Anammox systems in general, are reliable and portable, and that UASB systems are an appropriate technology for this process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call