Abstract

ObjectiveSegmentation of medical images is a crucial process in various image analysis applications. Automated segmentation methods excel in accuracy when compared to manual segmentation in the context of medical image analysis. One of the essential phases in the quantitative analysis of the brain is automated brain tissue segmentation using clinically obtained magnetic resonance imaging (MRI) data. It allows for precise quantitative examination of the brain, which aids in diagnosis, identification, and classification of disorders. Consequently, the efficacy of the segmentation approach is crucial to disease diagnosis and treatment planning. MethodsThis study presented a hybrid optimization method for segmenting brain tissue in clinical MRI scans using a fractional Henry horse herd gas optimization-based Shepard convolutional neural network (FrHHGO-based ShCNN). To segment the clinical brain MRI images into white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) tissues, the proposed framework was evaluated on the Lifespan Human Connectome Projects (HCP) database. The hybrid optimization algorithm, FrHHGO, integrates the fractional Henry gas optimization (FHGO) and horse herd optimization (HHO) algorithms. Training required 30 min, whereas testing and segmentation of brain tissues from an unseen image required an average of 12 s. ResultsCompared to the results obtained with no refinements, the Skull stripping refinement showed significant improvement. As the method included a preprocessing stage, it was flexible enough to enhance image quality, allowing for better results even with low-resolution input. Maximum precision of 93.2%, recall of 91.5%, Dice score of 91.1%, and F1-score of 90.5% were achieved using the proposed FrHHGO-based ShCNN, which was superior to all other approaches. ConclusionThe proposed method may outperform existing state-of-the-art methodologies in qualitative and quantitative measurements across a wide range of medical modalities. It might demonstrate its potential for real-life clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.