Abstract

Fast and high-accuracy detection of underwater targets based on side scan sonar images has great potential for marine fisheries, underwater security, marine mapping, underwater engineering and other applications. The following problems, however, must be addressed when using low-resolution side scan sonar images for underwater target detection: (1) the detection performance is limited due to the restriction on the input of multi-scale images; (2) the widely used deep learning algorithms have a low detection effect due to their complex convolution layer structures; (3) the detection performance is limited due to insufficient model complexity in training process; and (4) the number of samples is not enough because of the bad dataset preprocessing methods. To solve these problems, an improved neural network for underwater target detection—which is based on side scan sonar images and fully utilizes spatial pyramid pooling and online dataset preprocessing based on the You Look Only Once version three (YOLO V3) algorithm—is proposed. The methodology of the proposed approach is as follows: (1) the AlexNet, GoogleNet, VGGNet and the ResNet networks and an adopted YOLO V3 algorithm were the backbone networks. The structure of the YOLO V3 model is more mature and compact and has higher target detection accuracy and better detection efficiency than the other models; (2) spatial pyramid pooling was added at the end of the convolution layer to improve detection performance. Spatial pyramid pooling breaks the scale restrictions when inputting images to improve feature extraction because spatial pyramid pooling enables the backbone network to learn faster at high accuracy; and (3) online dataset preprocessing based on YOLO V3 with spatial pyramid pooling increases the number of samples and improves the complexity of the model to further improve detection process performance. Three-side scan imagery datasets were used for training and were tested in experiments. The quantitative evaluation using Accuracy, Recall, Precision, mAP and F1-Score metrics indicates that: for the AlexNet, GoogleNet, VGGNet and ResNet algorithms, when spatial pyramid pooling is added to their backbone networks, the average detection accuracy of the three sets of data was improved by 2%, 4%, 2% and 2%, respectively, as compared to their original formulations. Compared with the original YOLO V3 model, the proposed ODP+YOLO V3+SPP underwater target detection algorithm model has improved detection performance through the mAP qualitative evaluation index has increased by 6%, the Precision qualitative evaluation index has increased by 13%, and the detection efficiency has increased by 9.34%. These demonstrate that adding spatial pyramid pooling and online dataset preprocessing can improve the target detection accuracy of these commonly used algorithms. The proposed, improved neural network with spatial pyramid pooling and online dataset preprocessing based on the YOLO V3 method achieves the highest scores for underwater target detection results for sunken ships, fish flocks and seafloor topography, with mAP scores of 98%, 91% and 96% for the above three kinds of datasets, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call