Abstract

Background: To improve the efficiency of neural development from human embryonic stem cells, human embryoid body (hEB) generation is vital through 3-dimensional formation. However, conventional approaches still have limitations: long-term cultivation and laborious steps for lineage determination. Methods: In this study, we controlled the size of hEBs for ectodermal lineage specification using cell-penetrating magnetic nanoparticles (MNPs), which resulted in reduced time required for initial neural induction. The magnetized cells were applied to concentrated magnetic force for magnet-derived multicellular organization. The uniformly sized hEBs were differentiated in neural induction medium (NIM) and suspended condition. This neurally induced MNP-hEBs were compared with other groups. Results: As a result, the uniformly sized MNP-hEBs in NIM showed significantly improved neural inductivity through morphological analysis and expression of neural markers. Signaling pathways of the accelerated neural induction were detected via expression of representative proteins; Wnt signaling, dopaminergic neuronal pathway, intercellular communications, and mechanotransduction. Consequently, we could shorten the time necessary for early neurogenesis, thereby enhancing the neural induction efficiency. Conclusion: Overall, this study suggests not only the importance of size regulation of hEBs at initial differentiation stage but also the efficacy of MNP-based neural induction method and stimulations for enhanced neural tissue regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.