Abstract

In this paper, the three-dimensional Navier–Stokes characteristic boundary conditions for large-eddy and aeroacoustic simulations are extended to curvilinear coordinates formulations. A robust way of treating the transverse and gradient terms on boundary planes is presented which is different from previous generalized characteristic boundary conditions. The performance of the new formulation is examined via four test problems: an inviscid convective vortex, a two-dimensional mixing layer, a Mach 0.75 round jet, and a Mach 0.51 nozzle/jet. For each test problem, the numerical schemes used to implement the boundary conditions, the numerical parameters employed, and the predicted three-dimensional flow fields are presented. Based on the numerical experiments conducted, the new boundary conditions show promise for high-fidelity simulations of compressible viscous flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call