Abstract

The information theoretic measure known as mutual information is widely used as a way to quantify the similarity of two different labelings or divisions of the same set of objects, such as arises, for instance, in clustering and classification problems in machine learning or community detection problems in network science. Here we argue that the standard mutual information, as commonly defined, omits a crucial term which can become large under real-world conditions, producing results that can be substantially in error. We derive an expression for this missing term and hence write a corrected mutual information that gives accurate results even in cases where the standard measure fails. We discuss practical implementation of the new measure and give example applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.