Abstract

This paper deals with the problem of Stein-rule prediction in a general linear model. Our study extends the work of Gotway and Cressie (1993) by assuming that the covariance matrix of the model's disturbances is unknown. Also, predictions are based on a composite target function that incorporates allowance for the simultaneous predictions of the actual and average values of the target variable. We employ large sample asymptotic theory and derive and compare expressions for the bias vectors, mean squared error matrices, and risks based on a quadratic loss structure of the Stein-rule and the feasible best linear unbiased predictors. The results are applied to a model with first order autoregressive disturbances. Moreover, a Monte-Carlo experiment is conducted to explore the performance of the predictors in finite samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.