Abstract

Some Particle Swarm Optimization (PSO) algorithm have been used to solve Multi-Objective Optimization Problems (MOP) and have achieved good results. But finding a good convergence and distribution of solutions near the Pareto-optimal front in little computational time is still a hard work especially for some complex functions. This paper introduces an improved multi-objective PSO algorithm. It is called Strength Pareto Particle Swarm Optimization algorithm(SPPSO) which uses the ranking and sharing strategies of Strength Pareto Evolutionary Algorithm II (SPEA2). The hyper-volume metric (Zitzler 1999) is introduced to evaluate overall performance of the obtained solutions. Simulation results on five difficult test problems show that the proposed algorithm is able to find much better spread of solutions and better convergence near the true Pareto-optimal front compared to CMOPSO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.