Abstract

Current efforts to decode control signals from multi-unit (MU) recordings rely on the use of spike sorting to differentiate neurons and the use of firing rates estimated over tens of milliseconds to reconstruct sensorimotor signals. The computational bottleneck associated with the need to identify and sort individual neuron responses poses challenges for the development of portable, real-time, neural decoding systems that can be incorporated into assistive and prosthetic devices for the disabled. Here, we investigate the ability of spike-based linear filtering to reduce computational overhead and improve the accuracy of decoding neuronal signals for populations of spiking neurons. Using a population temporal (PT) decoding framework, the speed and accuracy of spike-based MU decoding were compared with firing rate-based approaches using simulated populations of motor neurons tuned for the velocity of intended movement. For the two linear filtering approaches, the accuracy of decoded movements was examined as a function of the number of recorded neurons, amount of noise, with and without spike sorting, and for training and test motions whose statistics were either similar or dissimilar. Our results suggest that the use of a PT decoding framework can offset the loss in accuracy associated with decoding unsorted MU neural signals. Coupled with up to a 20-fold reduction in the number of decoding weights and the ability to implement the filtering in hardware, this approach could reduce the computational requirements and thus increase the portability of next generation brain–machine interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.